论文标题

ABJ理论的拓扑线

The topological line of ABJ(M) theory

论文作者

Gorini, Nicola, Griguolo, Luca, Guerrini, Luigi, Penati, Silvia, Seminara, Domenico, Soresina, Paolo

论文摘要

我们构建了$ \ Mathcal n = 6 $ abj(M)理论的一维拓扑领域,并研究了其与质量成型的分区功能的关系。超对称定位提供了该分区函数作为矩阵积分的精确表示,该矩阵积分在弱和强耦合方面之间进行了插值。已经提出,应通过相对于群众进行合适的衍生物来计算维度 - 拓扑操作员的相关函数,但仍然缺乏确切的证据。我们通过在Twoloop处计算两点函数来提出这种关系的非平凡证据,从而成功地匹配了弱耦合和有限等级处的矩阵模型的扩展。作为副产品,我们获得了ABJ(M)理论的中央电荷$ C_T $ C_T $ C_T $ C_T $ C_T $ C_T(M)理论的两层显式表达式。三分和四点功能最多也可以确认关系。我们的结果指出,可以将ABJ(M)的一维拓扑领域定位,并且在3D SCFTS的Bootstrap程序中也可能很有用。

We construct the one-dimensional topological sector of $\mathcal N = 6$ ABJ(M) theory and study its relation with the mass-deformed partition function on $S^3$. Supersymmetric localization provides an exact representation of this partition function as a matrix integral, which interpolates between weak and strong coupling regimes. It has been proposed that correlation functions of dimension-one topological operators should be computed through suitable derivatives with respect to the masses, but a precise proof is still lacking. We present non-trivial evidence for this relation by computing the two-point function at twoloop, successfully matching the matrix model expansion at weak coupling and finite ranks. As a by-product we obtain the two-loop explicit expression for the central charge $c_T$ of ABJ(M) theory. Three- and four-point functions up to one-loop confirm the relation as well. Our result points towards the possibility to localize the one-dimensional topological sector of ABJ(M) and may also be useful in the bootstrap program for 3d SCFTs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源