论文标题
后代状态的相关功能和量子测量
Correlation functions and quantum measures of descendant states
论文作者
论文摘要
我们讨论了递归公式的计算机实现,以计算二维CFT中后代状态的相关函数。这使我们能够获得真空后代的任何$ n $ - 点函数,或者在非vacuum后代的情况下,将相关器表示为作用于相应主要相关器的差分运算符。然后,使用此工具,我们研究了后代状态之间的一些纠缠和区分性措施,即rényi熵,微量方形距离和夹心的rényi发散。我们的结果提供了猜想的RényiQNEC和新工具的测试,以分析大于$ c $的后代状态的全息描述。
We discuss a computer implementation of a recursive formula to calculate correlation functions of descendant states in two-dimensional CFT. This allows us to obtain any $N$-point function of vacuum descendants, or to express the correlator as a differential operator acting on the respective primary correlator in case of non-vacuum descendants. With this tool at hand, we then study some entanglement and distinguishability measures between descendant states, namely the Rényi entropy, trace square distance and sandwiched Rényi divergence. Our results provide a test of the conjectured Rényi QNEC and new tools to analyse the holographic description of descendant states at large $c$.