论文标题

独立近似值实现了重尾分布的封闭形式估计

Independent Approximates enable closed-form estimation of heavy-tailed distributions

论文作者

Nelson, Kenric P.

论文摘要

定义并证明了一种新的统计估计方法,即独立近似值(IAS),以实现重型分布参数的封闭形式估计。给定独立的,相同分布的样品来自一维分布,IAS是通过将样品划分为对,三重序或第n阶组形成的,并保留了大致相等的分组的中位数。事实证明,IAS的PDF是原始密度的归一化功率。从该属性中,重型分布被证明具有明确的IA对手段,其IA三胞胎的有限第二瞬间以及有限的,定义明确的(n-1)^的时刻,用于第n个小组。可以通过三个方程式的系统来估计广义帕累托和学生t分布的位置,规模和形状(自由度倒数)。对学生t分布的IA估计方法的性能分析表明,该方法会收敛到最大似然估计。位置和尺度的封闭形式估计分别取决于IA对的平均值和IA三重态的第二刻。对于学生的t分布,原始样品的几何平均值提供了确定形状的第三个方程,尽管其非线性解决方案需要迭代求解器。使用10,000个样品,参数估计的相对偏置小于0.01,相对精度小于+/- 0.1。对小样本(331)天体物理学数据集和大样本(2 x 10^8)标准地图模拟进行了统计物理应用。

A new statistical estimation method, Independent Approximates (IAs), is defined and proven to enable closed-form estimation of the parameters of heavy-tailed distributions. Given independent, identically distributed samples from a one-dimensional distribution, IAs are formed by partitioning samples into pairs, triplets, or nth-order groupings and retaining the median of those groupings that are approximately equal. The pdf of the IAs is proven to be the normalized n^th power of the original density. From this property, heavy-tailed distributions are proven to have well-defined means for their IA pairs, finite second moments for their IA triplets, and a finite, well-defined (n-1)^th moment for the nth grouping. Estimation of the location, scale, and shape (inverse of degree of freedom) of the generalized Pareto and Student's t distributions are possible via a system of three equations. Performance analysis of the IA estimation methodology for the Student's t distribution demonstrates that the method converges to the maximum likelihood estimate. Closed-form estimates of the location and scale are determined from the mean of the IA pairs and the second moment of the IA triplets, respectively. For the Student's t distribution, the geometric mean of the original samples provides a third equation to determine the shape, though its nonlinear solution requires an iterative solver. With 10,000 samples the relative bias of the parameter estimates is less than 0.01 and the relative precision is less than +/- 0.1. Statistical physics applications are carried out for both a small sample (331) astrophysics dataset and a large sample (2 x 10^8) standard map simulation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源