论文标题

最小同构和拓扑$ k $ - 理论

Minimal homeomorphisms and topological $K$-theory

论文作者

Deeley, Robin J., Putnam, Ian F., Strung, Karen R.

论文摘要

Lefschetz固定点定理为在行为良好的空间(例如有限的CW-复合物)上的最小同构形态存在提供了有力的障碍。我们表明,这些障碍物不适合更一般的空间。更确切地说,在规定的$ K $ - 理论或同居学上,在空间上构建了最小同构的同态。我们还允许对这些最小同构的$ k $理论和共同体学对地图进行一些控制。这允许构建许多最小同构的同态,而这些同态不适合身份。 $ c^*$ - 代数的申请将在另一篇论文中讨论。

The Lefschetz fixed point theorem provides a powerful obstruction to the existence of minimal homeomorphisms on well-behaved spaces such as finite CW-complexes. We show that these obstructions do not hold for more general spaces. More precisely, minimal homeomorphisms are constructed on space with prescribed $K$-theory or cohomology. We also allow for some control of the map on $K$-theory and cohomology induced from these minimal homeomorphisms. This allows for the construction of many minimal homeomorphisms that are not homotopic to the identity. Applications to $C^*$-algebras will be discussed in another paper.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源