论文标题

todd属和$ a_k $ - 单一$ s^1 $ - manifolds

Todd genus and $A_k$-genus of unitary $S^1$-manifolds

论文作者

Wang, Jianbo, Yu, Zhiwang, Wang, Yuyu

论文摘要

假设$ m $是一个紧凑的连接统一的2N维歧管,并承认保留给定复杂结构的非平凡圆圈动作。如果$ m $的第一类$ M $等于$ k_0x $对于特定的第二个集成共同体级$ x $带有$ | k_0 | k_0 | \ geq n + 2 $,并且其第一个积分共同体学组为零,则此简短论文显示Todd genus and $ a_k $ - genus of $ m $ $ $ $ $ $ $ $ $ vanish。

Assume that $M$ is a compact connected unitary 2n-dimensional manifold and admits a non-trivial circle action preserving the given complex structure. If the first Chern class of $M$ equals to $k_0x$ for a certain 2nd integral cohomology class $x$ with $|k_0|\geq n + 2$, and its first integral cohomology group is zero, this short paper shows that the Todd genus and $A_k$-genus of $M$ vanish.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源