论文标题

复合费米恩非线性Sigma模型

Composite Fermion Nonlinear Sigma Models

论文作者

Lee, Chao-Jung, Kumar, Prashant, Mulligan, Michael

论文摘要

我们使用复合费用平均场理论研究了整数量子大厅高原过渡。我们表明,相关的非线性Sigma模型中的拓扑$θ=π$项[P. Kumar等人,物理。 Rev. B 100,235124(2019)]在违反扰动的某些颗粒 - 孔对称性对称性上是稳定的,该粒子对称扰动,由复合效率有效质量参数化。该结果适用于Halperin,Lee和Read and Dirac复合效率理论,代表了新兴的颗粒孔对称性。对于没有颗粒对称性的无疾病合奏,我们发现$θ$在扩散状态内会连续变化。我们的结果要求进一步研究高原过渡的普遍性。

We study the integer quantum Hall plateau transition using composite fermion mean-field theory. We show that the topological $θ= π$ term in the associated nonlinear sigma model [P. Kumar et al., Phys. Rev. B 100, 235124 (2019)] is stable against a certain particle-hole symmetry violating perturbation, parameterized by the composite fermion effective mass. This result, which applies to both the Halperin, Lee, and Read and Dirac composite fermion theories, represents an emergent particle-hole symmetry. For a disorder ensemble without particle-hole symmetry, we find that $θ$ can vary continuously within the diffusive regime. Our results call for further study of the universality of the plateau transition.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源