论文标题

人工神经网络将圆形零归为组成数据

Artificial Neural Networks to Impute Rounded Zeros in Compositional Data

论文作者

Templ, Matthias

论文摘要

近年来,深度学习的方法变得越来越流行,但它们尚未到达组成数据分析。组成数据的插补方法通常应用于数据的添加,居中或等距对数字表示。通常,组成数据分析的方法只能应用于数据矩阵中观察到的阳性条目。因此,人们试图估算低于检测极限的缺失值或测量值。在本文中,显示了一种基于人工神经网络的圆形零的新方法,并与常规方法进行了比较。我们还对ANN的问题感兴趣,即为插补目的的Log-Ratios表示数据是否有意义。可以证明,当ANN归类为中等大小的数据集时,ANN具有竞争力,甚至表现更好。当数据集很大时,它们会提供更好的结果。另外,我们可以看到人工神经网络中的对数比率转换仍然有助于改善结果。这证明,在深度学习时代,组成数据分析理论和组成数据分析的所有属性的实现仍然非常重要。

Methods of deep learning have become increasingly popular in recent years, but they have not arrived in compositional data analysis. Imputation methods for compositional data are typically applied on additive, centered or isometric log-ratio representations of the data. Generally, methods for compositional data analysis can only be applied to observed positive entries in a data matrix. Therefore one tries to impute missing values or measurements that were below a detection limit. In this paper, a new method for imputing rounded zeros based on artificial neural networks is shown and compared with conventional methods. We are also interested in the question whether for ANNs, a representation of the data in log-ratios for imputation purposes, is relevant. It can be shown, that ANNs are competitive or even performing better when imputing rounded zeros of data sets with moderate size. They deliver better results when data sets are big. Also, we can see that log-ratio transformations within the artificial neural network imputation procedure nevertheless help to improve the results. This proves that the theory of compositional data analysis and the fulfillment of all properties of compositional data analysis is still very important in the age of deep learning.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源