论文标题

推断因果关系的方向,并通过贝叶斯孟德尔随机方法估算其效果

Inferring the Direction of a Causal Link and Estimating Its Effect via a Bayesian Mendelian Randomization Approach

论文作者

Bucur, Ioan Gabriel, Claassen, Tom, Heskes, Tom

论文摘要

使用遗传变异作为工具变量 - 一种称为孟德尔随机化的方法 - 是一种流行的流行病学方法,用于估计暴露量(表型,生物标志物,危险因素)对疾病或观察数据中与健康相关结果的因果关系。工具变量必须满足强大的,通常是无法测试的假设,这意味着在大量潜在候选人中找到良好的遗传工具是具有挑战性的。许多遗传变异通过不同的因果途径影响多种表型的事实使这种困难变得更加复杂,这是一种称为水平多效性的现象。这不仅导致误差在估计因果效应的大小,而且导致推断推定因果关系的方向。在本文中,我们提出了一种贝叶斯方法,称为贝叶斯MR,这是孟德尔随机化技术的概括,在这种方法中,我们允许进行多效效应,并且至关重要的是,可能会逆转因果关系。该方法的输出是目标因果效应上的后验分布,该分布提供了估计中不确定性的立即且易于解释的度量。更重要的是,我们使用平均贝叶斯模型来确定相对于反向方向的推断方向的可能性更高。

The use of genetic variants as instrumental variables - an approach known as Mendelian randomization - is a popular epidemiological method for estimating the causal effect of an exposure (phenotype, biomarker, risk factor) on a disease or health-related outcome from observational data. Instrumental variables must satisfy strong, often untestable assumptions, which means that finding good genetic instruments among a large list of potential candidates is challenging. This difficulty is compounded by the fact that many genetic variants influence more than one phenotype through different causal pathways, a phenomenon called horizontal pleiotropy. This leads to errors not only in estimating the magnitude of the causal effect but also in inferring the direction of the putative causal link. In this paper, we propose a Bayesian approach called BayesMR that is a generalization of the Mendelian randomization technique in which we allow for pleiotropic effects and, crucially, for the possibility of reverse causation. The output of the method is a posterior distribution over the target causal effect, which provides an immediate and easily interpretable measure of the uncertainty in the estimation. More importantly, we use Bayesian model averaging to determine how much more likely the inferred direction is relative to the reverse direction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源