论文标题

使用小波特征提取和梯度提升决策树自动检测异常的脑电图信号

Automatic detection of abnormal EEG signals using wavelet feature extraction and gradient boosting decision tree

论文作者

Albaqami, Hezam, Hassan, Ghulam Mubashar, Subasi, Abdulhamit, Datta, Amitava

论文摘要

脑电图经常用于诊断各种与大脑相关疾病的诊断评估,因为其出色的分辨率,非侵入性性质和低成本。但是,对脑电图信号的手动分析可能是艰苦的,对于专家来说是耗时的过程。它需要长时间的培训时间才能使医生在IT方面发展专业知识,此外,专家之间的评价率较低(IRA)。因此,许多基于计算机的诊断(CAD)研究都考虑了解释脑电图信号以减轻工作量并支持最终诊断的自动化。在本文中,我们提出了多通道脑电图记录中大脑信号的自动二进制分类框架。我们建议使用小波数据包分解(WPD)技术将EEG信号分解为频率子频段,并从每个选定系数中提取一组统计特征。此外,我们提出了一种新的方法来减少特征空间的维度,而不会损害提取特征的质量。提取的特征是使用基于Catboost,XGBoost和LightGBM的不同梯度提升决策树(GBDT)分类框架进行分类的。我们使用Temple University Hospital EEG异常语料库v2.0.0来测试我们提出的技术。我们发现,Catboost分类器的二元分类准确性为87.68%,并且在同一数据集上的最先进技术的精度超过1%,灵敏度的精度超过3%。在这项研究中获得的结果为WPD特征提取和GBDT分类器对EEG分类的有用性提供了重要的见解。

Electroencephalography is frequently used for diagnostic evaluation of various brain-related disorders due to its excellent resolution, non-invasive nature and low cost. However, manual analysis of EEG signals could be strenuous and a time-consuming process for experts. It requires long training time for physicians to develop expertise in it and additionally experts have low inter-rater agreement (IRA) among themselves. Therefore, many Computer Aided Diagnostic (CAD) based studies have considered the automation of interpreting EEG signals to alleviate the workload and support the final diagnosis. In this paper, we present an automatic binary classification framework for brain signals in multichannel EEG recordings. We propose to use Wavelet Packet Decomposition (WPD) techniques to decompose the EEG signals into frequency sub-bands and extract a set of statistical features from each of the selected coefficients. Moreover, we propose a novel method to reduce the dimension of the feature space without compromising the quality of the extracted features. The extracted features are classified using different Gradient Boosting Decision Tree (GBDT) based classification frameworks, which are CatBoost, XGBoost and LightGBM. We used Temple University Hospital EEG Abnormal Corpus V2.0.0 to test our proposed technique. We found that CatBoost classifier achieves the binary classification accuracy of 87.68%, and outperforms state-of-the-art techniques on the same dataset by more than 1% in accuracy and more than 3% in sensitivity. The obtained results in this research provide important insights into the usefulness of WPD feature extraction and GBDT classifiers for EEG classification.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源