论文标题
加权网络中的集合无量和玻色网凝结
Ensemble nonequivalence and Bose-Einstein condensation in weighted networks
论文作者
论文摘要
在统计物理学中,分别描述具有柔软和硬约束的系统的规范和微型合奏的渐近(非)等效性,分别描述了具有柔软和硬约束的系统。传统上,整体等价(EE)的分解与热力学极限中约束的非呈现相对规范波动有关。最近,它已根据微型典型和规范概率之间的非变化相对熵密度进行了重新重新制定。对EE违规的最早观察需要相变或远程相互作用。关于二进制网络的最新研究发现,即使没有相变的情况,大量局部约束也可能破坏EE。在这里,我们首次研究具有局部限制的加权网络中的集合无序。与它们的二元对应物不同,这些网络可以经历一种形式的Bose-Einstein凝结(BEC),产生核心 - 外围结构,其中有限的链路重量浓度集中在核心中。这种现象创建了一个独特的设置,其中局部约束与相变。我们发现只有在更传统的BEC环境中,只有在凝结阶段中幸存的相对波动。但是,我们还发现所有温度的非变化相对熵密度,这表明由于存在大量约束而导致EE的分解,而与BEC无关。因此,在广泛存在许多局部约束的情况下,消失的相对波动不再保证EE。
The asymptotic (non)equivalence of canonical and microcanonical ensembles, describing systems with soft and hard constraints respectively, is a central concept in statistical physics. Traditionally, the breakdown of ensemble equivalence (EE) has been associated with nonvanishing relative canonical fluctuations of the constraints in the thermodynamic limit. Recently, it has been reformulated in terms of a nonvanishing relative entropy density between microcanonical and canonical probabilities. The earliest observations of EE violation required phase transitions or long-range interactions. More recent research on binary networks found that an extensive number of local constraints can also break EE, even in absence of phase transitions. Here we study for the first time ensemble nonequivalence in weighted networks with local constraints. Unlike their binary counterparts, these networks can undergo a form of Bose-Einstein condensation (BEC) producing a core-periphery structure where a finite fraction of the link weights concentrates in the core. This phenomenon creates a unique setting where local constraints coexist with a phase transition. We find surviving relative fluctuations only in the condensed phase, as in more traditional BEC settings. However, we also find a non-vanishing relative entropy density for all temperatures, signalling a breakdown of EE due to the presence of an extensive number of constraints, irrespective of BEC. Therefore, in presence of extensively many local constraints, vanishing relative fluctuations no longer guarantee EE.