论文标题
贝叶斯神经网络高维度设置估计
High Dimensional Level Set Estimation with Bayesian Neural Network
论文作者
论文摘要
水平设置估计(LSE)是在各个领域的应用,例如材料设计,生物技术,机器操作测试等的一个重要问题。现有技术遇到了可伸缩性问题,也就是说,这些方法与高维输入相关。本文提出了使用贝叶斯神经网络解决高维LSE问题的新方法。特别是,我们考虑了两种类型的LSE问题:(1)\ textIt {equipit} LSE问题,其中阈值级别是固定的用户指定值,以及(2)\ textIt {incempit {indimit} lse问题,其中阈值级别定义为目标函数(未知)最大值的(未知数)的百分比。对于每个问题,我们将得出相应的基于理论信息的采集函数来采样数据点,以最大程度地提高级别设置的精度。此外,我们还分析了我们提出的采集函数的理论时间复杂性,并提出了一种实用方法,以有效调整网络超参数以达到高模型的准确性。合成和现实世界数据集的数值实验表明,与现有最新方法相比,我们提出的方法可以取得更好的结果。
Level Set Estimation (LSE) is an important problem with applications in various fields such as material design, biotechnology, machine operational testing, etc. Existing techniques suffer from the scalability issue, that is, these methods do not work well with high dimensional inputs. This paper proposes novel methods to solve the high dimensional LSE problems using Bayesian Neural Networks. In particular, we consider two types of LSE problems: (1) \textit{explicit} LSE problem where the threshold level is a fixed user-specified value, and, (2) \textit{implicit} LSE problem where the threshold level is defined as a percentage of the (unknown) maximum of the objective function. For each problem, we derive the corresponding theoretic information based acquisition function to sample the data points so as to maximally increase the level set accuracy. Furthermore, we also analyse the theoretical time complexity of our proposed acquisition functions, and suggest a practical methodology to efficiently tune the network hyper-parameters to achieve high model accuracy. Numerical experiments on both synthetic and real-world datasets show that our proposed method can achieve better results compared to existing state-of-the-art approaches.