论文标题
CSCK指标在一般类型的平滑最小模型上的收敛性
Convergence of cscK metrics on smooth minimal models of general type
论文作者
论文摘要
我们考虑在规范类别的邻里的一般类型的平滑最小模型上考虑恒定标态曲率指标,这是固定的Kähler指标对规范类别的扰动。我们表明,这种指标的序列在紧凑的子集上平稳地收敛,从典型类别中的sixularkähler爱因斯坦度量标准。这部分证实了简·希明(Jian-Shi-s)的猜想,内容涉及此类序列的收敛行为。
We consider constant scalar curvature Kähler metrics on a smooth minimal model of general type in a neighborhood of the canonical class, which is the perturbation of the canonical class by a fixed Kähler metric. We show that sequences of such metrics converge smoothly on compact subsets away from a subvariety to the singular Kähler Einstein metric in the canonical class. This confirms partially a conjecture of Jian-Shi-Song about the convergence behavior of such sequences.