论文标题

使用Gini系数来表征计算化学误差分布的形状

Using the Gini coefficient to characterize the shape of computational chemistry error distributions

论文作者

Pernot, Pascal, Savin, Andreas

论文摘要

错误的分布是计算化学方法的评估和基准测试中的中心对象。流行和经常盲目使用平均未签名误差作为基准测试统计量导致忽略影响测试方法可靠性的分布功能。我们探讨了Gini系数如何提供错误分布的全局表示,但是除了极端值外,无法实现明确的诊断。我们建议通过将GINI系数应用于以模式为中心的误差分布来缓解歧义。此版本可以有效地补充基准测试统计信息,并以可能有问题形状的错误集对错误集进行警报。

The distribution of errors is a central object in the assesment and benchmarking of computational chemistry methods. The popular and often blind use of the mean unsigned error as a benchmarking statistic leads to ignore distributions features that impact the reliability of the tested methods. We explore how the Gini coefficient offers a global representation of the errors distribution, but, except for extreme values, does not enable an unambiguous diagnostic. We propose to relieve the ambiguity by applying the Gini coefficient to mode-centered error distributions. This version can usefully complement benchmarking statistics and alert on error sets with potentially problematic shapes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源