论文标题
直径两种特性的稳定性
Stability of diametral diameter two properties
论文作者
论文摘要
我们证明了直径的两个属性由$ f $ - 理想(例如$ m $ - ideals)继承。另一方面,在强烈的几何假设下,这些属性从$ m $ - 理想的到超空间。我们还表明,在相应的Köthe-Bochner空间的形成下,所有直径的直径两种特性都稳定(例如,$ l_p $ -bochner空间)。最后,我们调查了两个Banach空间的投影张量产物何时具有一定直径的两个特性。
We prove that the diametral diameter two properties are inherited by $F$-ideals (e.g., $M$-ideals). On the other hand, these properties are lifted from an $M$-ideal to the superspace under strong geometric assumptions. We also show that all of the diametral diameter two properties are stable under the formation of corresponding Köthe-Bochner spaces (e.g., $L_p$-Bochner spaces). Finally, we investigate when the projective tensor product of two Banach spaces has some diametral diameter two property.