论文标题

半全球形状感知网络

Semi-Global Shape-aware Network

论文作者

Zhang, Pengju, Wu, Yihong, Zhu, Jiagang

论文摘要

非本地操作通常用于通过将全局上下文汇总到每个位置来捕获长期依赖性。但是,大多数方法无法保留对象形状,因为它们仅关注特征相似性,而忽略了中央和其他位置之间以捕获长期依赖性的接近性,而形状意识对许多计算机视觉任务都是有益的。在本文中,我们提出了一个半全球形状感知网络(SGSNET),该网络(SGSNET)考虑在建模远程依赖性时保持对象形状的特征相似性和接近性。层次结构的方式用于汇总全球环境。在第一层中,整个特征中的每个位置仅根据相似性和接近度汇总垂直和水平方向上的上下文信息。然后结果将输入到第二级进行相同的操作。通过这种层次结构的方式,每个中心位置都从所有其他位置获得支持,相似性和接近性的组合使每个位置增益大部分都来自同一语义对象。此外,我们还提出了一种线性时间算法,以汇总上下文信息,其中特征映射中的每个行和列都被视为二进制树,以降低相似性计算成本。语义分割和图像检索的实验表明,在现有网络中添加SGSNET可以在准确性和效率方面取得良好的提高。

Non-local operations are usually used to capture long-range dependencies via aggregating global context to each position recently. However, most of the methods cannot preserve object shapes since they only focus on feature similarity but ignore proximity between central and other positions for capturing long-range dependencies, while shape-awareness is beneficial to many computer vision tasks. In this paper, we propose a Semi-Global Shape-aware Network (SGSNet) considering both feature similarity and proximity for preserving object shapes when modeling long-range dependencies. A hierarchical way is taken to aggregate global context. In the first level, each position in the whole feature map only aggregates contextual information in vertical and horizontal directions according to both similarity and proximity. And then the result is input into the second level to do the same operations. By this hierarchical way, each central position gains supports from all other positions, and the combination of similarity and proximity makes each position gain supports mostly from the same semantic object. Moreover, we also propose a linear time algorithm for the aggregation of contextual information, where each of rows and columns in the feature map is treated as a binary tree to reduce similarity computation cost. Experiments on semantic segmentation and image retrieval show that adding SGSNet to existing networks gains solid improvements on both accuracy and efficiency.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源