论文标题

用于模拟单分子电子传输的量子算法

Quantum Algorithm for Simulating Single-Molecule Electron Transport

论文作者

Jahangiri, Soran, Arrazola, Juan Miguel, Delgado, Alain

论文摘要

对分子水平的电子传输的准确描述需要精确处理量子效应。这些效果在确定单分子的电子传输特性(例如电流 - 电压曲线)方面起着至关重要的作用,这可能是在经典模拟中具有挑战性的。在这里,我们引入了一种量子算法,以通过弱耦合方案中的单分子连接有效地计算电子电流。我们表明,用于模拟分子不同电荷状态之间的振动转变的量子计算机可用于计算顺序电子传输速率和电流。在谐波近似中,可以使用高斯玻色子采样设备实现该算法,这是光子量子计算的近期平台。我们应用算法来模拟卟啉分子的电流和电导。模拟显示了与实验和理论数据一致的量子效应,这些量子效应被表现为当前和电导中的离散步骤。

An accurate description of electron transport at a molecular level requires a precise treatment of quantum effects. These effects play a crucial role in determining the electron transport properties of single molecules, such as current-voltage curves, which can be challenging to simulate classically. Here we introduce a quantum algorithm to efficiently calculate the electronic current through single-molecule junctions in the weak-coupling regime. We show that a quantum computer programmed to simulate vibronic transitions between different charge states of a molecule can be used to compute sequential electron transfer rates and electric current. In the harmonic approximation, the algorithm can be implemented using Gaussian boson sampling devices, which are a near-term platform for photonic quantum computing. We apply the algorithm to simulate the current and conductance of a magnesium porphine molecule. The simulations demonstrate quantum effects that are manifested as discrete steps in the current and conductance, in agreement with experimental and theoretical data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源