论文标题

没有对抗训练的多类拆分

Multi-type Disentanglement without Adversarial Training

论文作者

Sha, Lei, Lukasiewicz, Thomas

论文摘要

通过解开潜在空间来控制自然语言的风格是迈向可解释的机器学习的重要一步。潜在空间被解散后,可以通过调整样式表示而不影响句子的其他功能来转换句子的样式。以前的工作通常使用对抗训练来确保脱离媒介不会彼此影响。但是,对抗方法很难训练。尤其是当有多个功能(例如,情感或时态)时,我们称之为本文中的样式类型),每个功能都需要一个单独的歧视器来提取与该功能相对应的分离的样式矢量。在本文中,我们提出了一种统一的分配控制方法,该方法提供了具有独特表示的每个特定样式价值(例如,正面情感或过去时的价值)。该方法为避免在多类分离中避免对抗性训练提供了坚实的理论基础。我们还提出了多种损失功能,以实现样式的脱节以及多种样式类型之间的分离。此外,我们观察到,如果两种不同的样式类型始终具有数据集中出现的一些特定样式值,则它们在传输样式值时会相互影响。我们称这种现象训练偏见,并提出损失功能来减轻这种训练偏见,同时散布多种类型。我们在两个数据集(Yelp服务评论和亚马逊产品评论)上进行实验,以评估样式访问效果以及对两种样式类型的无监督样式转移性能:情感和时态。实验结果显示了我们模型的有效性。

Controlling the style of natural language by disentangling the latent space is an important step towards interpretable machine learning. After the latent space is disentangled, the style of a sentence can be transformed by tuning the style representation without affecting other features of the sentence. Previous works usually use adversarial training to guarantee that disentangled vectors do not affect each other. However, adversarial methods are difficult to train. Especially when there are multiple features (e.g., sentiment, or tense, which we call style types in this paper), each feature requires a separate discriminator for extracting a disentangled style vector corresponding to that feature. In this paper, we propose a unified distribution-controlling method, which provides each specific style value (the value of style types, e.g., positive sentiment, or past tense) with a unique representation. This method contributes a solid theoretical basis to avoid adversarial training in multi-type disentanglement. We also propose multiple loss functions to achieve a style-content disentanglement as well as a disentanglement among multiple style types. In addition, we observe that if two different style types always have some specific style values that occur together in the dataset, they will affect each other when transferring the style values. We call this phenomenon training bias, and we propose a loss function to alleviate such training bias while disentangling multiple types. We conduct experiments on two datasets (Yelp service reviews and Amazon product reviews) to evaluate the style-disentangling effect and the unsupervised style transfer performance on two style types: sentiment and tense. The experimental results show the effectiveness of our model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源