论文标题

分隔曲线上的Riemann-Roch空间的明确基础

Explicit bases of the Riemann-Roch spaces on divisors on hyperelliptic curves

论文作者

Falcone, Giovanni, Figula, Ágota, Hannusch, Carolin

论文摘要

对于(假想的)高椭圆曲线$ \ Mathcal {H} $属$ g $,我们确定Riemann-Roch空间的基础G $,$ω$是一个Weierstrass点,是无穷大的点。作为一个应用程序,我们确定$ j = g = 3 $和$ n = 4的GOPPA代码的发电机矩阵。

For an (imaginary) hyperelliptic curve $\mathcal{H}$ of genus $g$, we determine a basis of the Riemann-Roch space $\mathcal{L}(D)$, where $D$ is a divisor with positive degree $n$, linearly equivalent to $P_1+\cdots+ P_j+(n-j)Ω$, with $0 \le j \le g$, where $Ω$ is a Weierstrass point, taken as the point at infinity. As an application, we determine a generator matrix of a Goppa code for $j=g=3$ and $n=4.$

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源