论文标题
可编程量子退火器作为嘈杂的吉布斯采样器
Programmable Quantum Annealers as Noisy Gibbs Samplers
论文作者
论文摘要
从高维概率分布中绘制独立样本代表了现代算法的主要计算瓶颈,包括强大的机器学习框架,例如深度学习。寻求发现可以有效地实现采样的较大分布族的寻求启发,这激发了探索的探索,而不是建立的计算方法,并转向利用量子计算原理的新型物理设备。量子退火体现了一种有希望的计算范式,该计算范式与吉布斯分布中能量景观的复杂性密切相关,将系统状态的概率与这些状态的能量联系起来。在这里,我们研究了量子退火器的物理实现的采样特性,这些量子通过超导速度量子的可编程晶格实现。对这些量子机产生的数据的综合统计分析表明,量子退火器的行为是从低温嘈杂的吉布斯分布中产生独立配置的样本。我们表明,输出分布的结构探测了量子设备的固有物理特性,例如单个Qubits的有效温度以及局部量子噪声的大小,这导致了硬件实现中缺乏的非线性响应函数和虚假的相互作用。我们预计我们的方法学会在表征子孙后代的量子退火器和其他新兴模拟计算设备的表征中广泛使用。
Drawing independent samples from high-dimensional probability distributions represents the major computational bottleneck for modern algorithms, including powerful machine learning frameworks such as deep learning. The quest for discovering larger families of distributions for which sampling can be efficiently realized has inspired an exploration beyond established computing methods and turning to novel physical devices that leverage the principles of quantum computation. Quantum annealing embodies a promising computational paradigm that is intimately related to the complexity of energy landscapes in Gibbs distributions, which relate the probabilities of system states to the energies of these states. Here, we study the sampling properties of physical realizations of quantum annealers which are implemented through programmable lattices of superconducting flux qubits. Comprehensive statistical analysis of the data produced by these quantum machines shows that quantum annealers behave as samplers that generate independent configurations from low-temperature noisy Gibbs distributions. We show that the structure of the output distribution probes the intrinsic physical properties of the quantum device such as effective temperature of individual qubits and magnitude of local qubit noise, which result in a non-linear response function and spurious interactions that are absent in the hardware implementation. We anticipate that our methodology will find widespread use in characterization of future generations of quantum annealers and other emerging analog computing devices.