论文标题
随机图上的组件游戏
Component Games on Random Graphs
论文作者
论文摘要
在$ \ left(1:b \右)$ component Game在图表$ g $中播放的$ g $,两个玩家,制造商和断路器,或者分别声称〜$ 1 $和〜$ b $以前无人认领的$ g $的边缘。 Maker的目的是最大化图形中最大的连接组件的大小,而Breaker则试图最大程度地减少它。我们表明,在二项式随机图上游戏的结果与图表中的非空的$(B+2)$ - 核心的外观密切相关。 对于任何整数$ k $,图形的$ k $ core是其最低学位的最大子图,至少是$ k $。 Pittel,Spencer和Wormald在1996年表明,对于任何$ k \ ge3 $,都有明确定义的常数$ c_ {k} $,因此$ p = c_ {k {k}/n $都是$ k $ core in $ g(n,p)$的阈值函数。更确切地说,$ g(n,c/n)$在常数$ c> c> c_ {k} $和一个空的$ k $ -core时,在$ c <c_ c_ {k {k {k} $时具有whp whp。 我们表明,对于任何正常数$ b $,在$ g(n,c/n)$上玩$(1:b)$组件游戏时,如果$ c> c> c> c> c> c_ {b+2} $,则制造商可以构建线性大小的组件,而断路器可以防止Maker whl whw wh polylogarithmic-size组件,如果构建大于$ c c <c <c <c_ c_ c_ c_ ^ b+2}。 对于Breaker的策略,我们证明了可能具有独立利益的定理。用于计算任何图的$ k $ core的标准算法是,只要保留此类顶点,将重复删除(“ Peel”)。当$ g(n,c/n)$ for $ c <c_ {k {k} $时,江,米岑玛赫和塔勒表明,$ \ log_ {k-1} \ log n+t n+θ(1)$ peelations是whp所必需的,足以获得(空的)$ k $ k $ os-core of〜$ g $。我们的定理指出,经过持续数量的迭代,$ g $被粉碎成各个块状大小。
In the $\left(1:b\right)$ component game played on a graph $G$, two players, Maker and Breaker, alternately claim~$1$ and~$b$ previously unclaimed edges of $G$, respectively. Maker's aim is to maximise the size of a largest connected component in her graph, while Breaker is trying to minimise it. We show that the outcome of the game on the binomial random graph is strongly correlated with the appearance of a nonempty $(b+2)$-core in the graph. For any integer $k$, the $k$-core of a graph is its largest subgraph of minimum degree at least $k$. Pittel, Spencer and Wormald showed in 1996 that for any $k\ge3$ there exists an explicitly defined constant $c_{k}$ such that $p=c_{k}/n$ is the threshold function for the appearance of the $k$-core in $G(n,p)$. More precisely, $G(n,c/n)$ has WHP a linear-size $k$-core when the constant $c>c_{k}$, and an empty $k$-core when $c<c_{k}$. We show that for any positive constant $b$, when playing the $(1:b)$ component game on $G(n,c/n)$, Maker can WHP build a linear-size component if $c>c_{b+2}$, while Breaker can WHP prevent Maker from building larger than polylogarithmic-size components if $c<c_{b+2}$. For Breaker's strategy, we prove a theorem which may be of independent interest. The standard algorithm for computing the $k$-core of any graph is to repeatedly delete ("peel") all vertices of degree less than $k$, as long as such vertices remain. When $G(n,c/n)$ for $c<c_{k}$, it was shown by Jiang, Mitzenmacher and Thaler that $\log_{k-1}\log n+Θ(1)$ peeling iterations are WHP necessary and sufficient to obtain the (empty) $k$-core of~$G$. Our theorem states that already after a constant number of iterations, $G$ is WHP shattered into pieces of polylogarithmic size.