论文标题

非结构化和不确定环境的多模式异常检测

Multi-Modal Anomaly Detection for Unstructured and Uncertain Environments

论文作者

Ji, Tianchen, Vuppala, Sri Theja, Chowdhary, Girish, Driggs-Campbell, Katherine

论文摘要

为了实现高级自治,现代机器人需要通过最少的人类监督从异常和失败中恢复和恢复的能力。多模式传感器信号可以为此类异常检测任务提供更多信息;但是,高维和异质传感器方式的融合仍然是一个具有挑战性的问题。我们提出了一个深度学习神经网络:监督的变异自动编码器(SVAE),以在非结构化和不确定的环境中进行故障识别。我们的模型利用VAE的代表力从高维输入中提取可靠的功能,以进行监督的学习任务。训练目标统一生成模型和判别模型,从而使学习成为一个阶段的程序。我们对真实田间机器人数据的实验表明,与基线方法相比,我们的模型学会了可解释的表示形式。我们的结果视频可在我们的网站上找到:https://sites.google.com/illinois.edu/supervise-vae。

To achieve high-levels of autonomy, modern robots require the ability to detect and recover from anomalies and failures with minimal human supervision. Multi-modal sensor signals could provide more information for such anomaly detection tasks; however, the fusion of high-dimensional and heterogeneous sensor modalities remains a challenging problem. We propose a deep learning neural network: supervised variational autoencoder (SVAE), for failure identification in unstructured and uncertain environments. Our model leverages the representational power of VAE to extract robust features from high-dimensional inputs for supervised learning tasks. The training objective unifies the generative model and the discriminative model, thus making the learning a one-stage procedure. Our experiments on real field robot data demonstrate superior failure identification performance than baseline methods, and that our model learns interpretable representations. Videos of our results are available on our website: https://sites.google.com/illinois.edu/supervised-vae .

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源