论文标题

引导无可口可乐对称$ o(n)$标量

Bootstrapping traceless symmetric $O(N)$ scalars

论文作者

Reehorst, Marten, Refinetti, Maria, Vichi, Alessandro

论文摘要

我们使用数值引导技术来研究$ o(n)$的无纹状体对称张量和两个索引$ t_ {ij} $的相关功能。我们为所有相关表示形式和$ n $的几个值获得操作员尺寸的上限。我们发现了几个与任何已知模型相对应的扭结家庭,我们讨论了可能的候选人。然后,我们专门研究$ n = 4 $的情况,该$ n $ $是为了描述反铁磁真实投影模型arp $^{3} $中的相位过渡。晶格模拟为存在二阶相变的存在提供了有力的证据,而有效的现场理论方法不能预测任何固定点。我们确定一组假设,将操作员尺寸限制为与晶格预测重叠的封闭区域。在单个相关器案例中推动数字或考虑涉及$ t $和最低尺寸标量单元的混合系统时,该区域仍然存在。

We use numerical bootstrap techniques to study correlation functions of traceless symmetric tensors of $O(N)$ with two indexes $t_{ij}$. We obtain upper bounds on operator dimensions for all the relevant representations and several values of $N$. We discover several families of kinks, which do not correspond to any known model and we discuss possible candidates. We then specialize to the case $N=4$, which has been conjectured to describe a phase transition in the antiferromagnetic real projective model ARP$^{3}$. Lattice simulations provide strong evidence for the existence of a second order phase transition, while an effective field theory approach does not predict any fixed point. We identify a set of assumptions that constrain operator dimensions to a closed region overlapping with the lattice prediction. The region is still present after pushing the numerics in the single correlator case or when considering a mixed system involving $t$ and the lowest dimension scalar singlet.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源