论文标题
组合PT-DT对应关系
The combinatorial PT-DT correspondence
论文作者
论文摘要
我们解决了代数几何形状的开放猜想,该猜想指出,唐纳德森 - 托马斯理论和pandharipande-thomas理论中的两个平面隔板式对象的生成功能(用于calabi-yau拓扑的“盒子计数”公式)等于MacMahon生成函数的因子。我们证明的主要工具是desnanot-jacobi型“凝结”身份,以及肯尼·威尔森(Kenyon-Wilson)三分法模型的新颖应用。
We resolve an open conjecture from algebraic geometry, which states that two generating functions for plane partition-like objects (the "box-counting" formulae for the Calabi-Yau topological vertices in Donaldson-Thomas theory and Pandharipande-Thomas theory) are equal up to a factor of MacMahon's generating function for plane partitions. The main tools in our proof are a Desnanot-Jacobi-type "condensation" identity, and a novel application of the tripartite double-dimer model of Kenyon-Wilson.