论文标题

自动驾驶的行人行为预测:要求,指标和相关功能

Pedestrian Behavior Prediction for Automated Driving: Requirements, Metrics, and Relevant Features

论文作者

Herman, Michael, Wagner, Jörg, Prabhakaran, Vishnu, Möser, Nicolas, Ziesche, Hanna, Ahmed, Waleed, Bürkle, Lutz, Kloppenburg, Ernst, Gläser, Claudius

论文摘要

自动化的车辆需要对交通状况有全面的了解,以确保安全和预期的驾驶。在这种情况下,对行人的预测尤其具有挑战性,因为行人行为可能受到多种因素的影响。在本文中,我们通过系统级方法彻底分析了对自动驾驶的行人行为预测的要求。为此,我们研究了现实世界中的行人车辆与人驾驶员的相互作用。然后,根据人类驾驶行为,我们得出了自动车辆的适当反应模式,并确定对行人的预测要求。这包括一个量身定制的新型度量,以从系统级别的角度衡量预测性能。在大规模数据集上评估了所提出的度量,该数据集包括数千种实际的行人车辆相互作用。此外,我们进行了消融研究,以评估不同上下文提示的重要性,并将这些结果与使用既定的绩效指标获得的绩效指标获得的结果进行比较。我们的结果强调了系统级方法对行人行为预测的重要性。

Automated vehicles require a comprehensive understanding of traffic situations to ensure safe and anticipatory driving. In this context, the prediction of pedestrians is particularly challenging as pedestrian behavior can be influenced by multiple factors. In this paper, we thoroughly analyze the requirements on pedestrian behavior prediction for automated driving via a system-level approach. To this end we investigate real-world pedestrian-vehicle interactions with human drivers. Based on human driving behavior we then derive appropriate reaction patterns of an automated vehicle and determine requirements for the prediction of pedestrians. This includes a novel metric tailored to measure prediction performance from a system-level perspective. The proposed metric is evaluated on a large-scale dataset comprising thousands of real-world pedestrian-vehicle interactions. We furthermore conduct an ablation study to evaluate the importance of different contextual cues and compare these results to ones obtained using established performance metrics for pedestrian prediction. Our results highlight the importance of a system-level approach to pedestrian behavior prediction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源