论文标题
经济有效的联邦学习设计
Cost-Effective Federated Learning Design
论文作者
论文摘要
联合学习(FL)是一个分布式学习范式,它使大量设备能够在不共享其原始数据的情况下协作学习模型。尽管具有实践效率和有效性,但迭代的设备学习过程仍在学习时间和能耗方面造成了相当大的成本,这取决于所选客户的数量以及每个培训回合中本地迭代的数量。在本文中,我们分析了如何设计自适应FL,该自适应FL最佳选择这些基本控制变量,以最大程度地减少总成本,同时确保收敛。从理论上讲,我们通过分析建立了与收敛上限的总成本与控制变量之间的关系。为了有效地解决成本最小化问题,我们开发了一种基于低成本抽样的算法来学习收敛相关的未知参数。我们得出重要的解决方案属性,可有效地确定不同度量偏好的设计原理。实际上,我们在模拟环境和硬件原型中评估了理论结果。实验证据验证了我们的派生特性,并证明我们所提出的解决方案在各种数据集,不同的机器学习模型和异质系统设置方面实现了近乎最佳的性能。
Federated learning (FL) is a distributed learning paradigm that enables a large number of devices to collaboratively learn a model without sharing their raw data. Despite its practical efficiency and effectiveness, the iterative on-device learning process incurs a considerable cost in terms of learning time and energy consumption, which depends crucially on the number of selected clients and the number of local iterations in each training round. In this paper, we analyze how to design adaptive FL that optimally chooses these essential control variables to minimize the total cost while ensuring convergence. Theoretically, we analytically establish the relationship between the total cost and the control variables with the convergence upper bound. To efficiently solve the cost minimization problem, we develop a low-cost sampling-based algorithm to learn the convergence related unknown parameters. We derive important solution properties that effectively identify the design principles for different metric preferences. Practically, we evaluate our theoretical results both in a simulated environment and on a hardware prototype. Experimental evidence verifies our derived properties and demonstrates that our proposed solution achieves near-optimal performance for various datasets, different machine learning models, and heterogeneous system settings.