论文标题

Gegelati:通过通用和可演化纠结的程序图的轻量级人工智能

Gegelati: Lightweight Artificial Intelligence through Generic and Evolvable Tangled Program Graphs

论文作者

Desnos, Karol, Sourbier, Nicolas, Raumer, Pierre-Yves, Gesny, Olivier, Pelcat, Maxime

论文摘要

纠结程序图(TPG)是一种基于遗传编程概念的增强学习技术。在最先进的学习环境中,TPG已被证明可以与深度神经网络(DNNS)提供可比的能力,以占其计算和存储成本的一小部分。 TPG的这种轻巧性,无论是用于培训还是推理,使它们成为在具有有限的计算和存储资源的嵌入式系统上实施人工智能(AIS)的有趣模型。在本文中,我们介绍了用于TPG的Gegelati库。除了介绍库的一般概念和特征外,本文还详细介绍了两个主要贡献:1/ TPG的确定性培训过程的并行化,用于支持异质的多处理器系统片(MPSOC)。 2/在TPG模型的遗传进化程序中,支持可自定义的指令集和数据类型。通过对从高端24核处理器到低功率异质MPSOC的体系结构的实验,可以证明并行训练过程的可伸缩性。在最先进的强化学习环境中,证明了可定制说明对培训过程结果的影响。 CCS概念:$ \ bullet $计算机系统组织$ \ rightarrow $嵌入式系统; $ \ bullet $计算方法$ \ rightarrow $机器学习。

Tangled Program Graph (TPG) is a reinforcement learning technique based on genetic programming concepts. On state-of-the-art learning environments, TPGs have been shown to offer comparable competence with Deep Neural Networks (DNNs), for a fraction of their computational and storage cost. This lightness of TPGs, both for training and inference, makes them an interesting model to implement Artificial Intelligences (AIs) on embedded systems with limited computational and storage resources. In this paper, we introduce the Gegelati library for TPGs. Besides introducing the general concepts and features of the library, two main contributions are detailed in the paper: 1/ The parallelization of the deterministic training process of TPGs, for supporting heterogeneous Multiprocessor Systems-on-Chips (MPSoCs). 2/ The support for customizable instruction sets and data types within the genetically evolved programs of the TPG model. The scalability of the parallel training process is demonstrated through experiments on architectures ranging from a high-end 24-core processor to a low-power heterogeneous MPSoC. The impact of customizable instructions on the outcome of a training process is demonstrated on a state-of-the-art reinforcement learning environment. CCS Concepts: $\bullet$ Computer systems organization $\rightarrow$ Embedded systems; $\bullet$ Computing methodologies $\rightarrow$ Machine learning.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源