论文标题

在深层生成模型中,无监督对全球因素的学习

Unsupervised Learning of Global Factors in Deep Generative Models

论文作者

Peis, Ignacio, Olmos, Pablo M., Artés-Rodríguez, Antonio

论文摘要

我们提出了一种基于非I.I.D.的新型深层生成模型。各种自动编码器以完全无监督的方式捕获观测之间的全球依赖性。与最深层生成模型中全球建模的最近半监督的替代方案相反,我们的方法将混合模型结合在局部或数据依赖性空间和全球高斯潜在变量中,这使我们获得了三个特定的见解。首先,诱导的潜在全球空间捕获了可解释的分解表示形式,没有用户定义的正规化在较低的证据中(如$β$ -VAE及其概括)。其次,我们表明该模型执行域对准以找到不同数据库之间的相关性和插值。最后,我们研究了全球空间区分具有非平凡基础结构的观测组的能力,例如具有共享属性的面部图像或数字图像的定义序列。

We present a novel deep generative model based on non i.i.d. variational autoencoders that captures global dependencies among observations in a fully unsupervised fashion. In contrast to the recent semi-supervised alternatives for global modeling in deep generative models, our approach combines a mixture model in the local or data-dependent space and a global Gaussian latent variable, which lead us to obtain three particular insights. First, the induced latent global space captures interpretable disentangled representations with no user-defined regularization in the evidence lower bound (as in $β$-VAE and its generalizations). Second, we show that the model performs domain alignment to find correlations and interpolate between different databases. Finally, we study the ability of the global space to discriminate between groups of observations with non-trivial underlying structures, such as face images with shared attributes or defined sequences of digits images.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源