论文标题
在Erdős-rényi随机图上磁化模型的磁化波动 - 低温和外部磁场的机制
Fluctuations of the Magnetization for Ising models on Erdős-Rényi Random Graphs -- the Regimes of Low Temperature and External Magnetic Field
论文作者
论文摘要
我们继续对(定向的)erdős-rényi随机图$ g(n,p)$上的Ising模型进行分析。我们证明了用于磁化的淬火中心限制定理,并描述了对数分区函数的波动。在目前的说明中,我们考虑存在外部磁场时的低温状态$β> 1 $。在这两种情况下,我们都假设$ p = p(n)$满足$ p^3n \ to \ infty $。
We continue our analysis of Ising models on the (directed) Erdős-Rényi random graph $G(N,p)$. We prove a quenched Central Limit Theorem for the magnetization and describe the fluctuations of the log-partition function. In the current note we consider the low temperature regime $β>1$ and the case when an external magnetic field is present. In both cases, we assume that $p=p(N)$ satisfies $p^3N \to \infty$.