论文标题
基于聚集的几何多移民求解器,用于在非结构网格上进行紧凑的不连续的Galerkin离散
Agglomeration-Based Geometric Multigrid Solvers for Compact Discontinuous Galerkin Discretizations on Unstructured Meshes
论文作者
论文摘要
我们通过使用一种简单的团聚方法来构建一个较粗网格的层次结构,为紧凑的不连续的Galerkin方法提供了几何多机求解器,该方法可以处理任意元素形状和尺寸。该方法很容易扩展到其他不连续的Galerkin离散化,包括本地DG方法和内部惩罚方法。我们证明了泊松方程的出色求解器性能,只要使用通量公式用于操作员的粗化和为数值通量选择的合适开关函数。
We present a geometric multigrid solver for the Compact Discontinuous Galerkin method through building a hierarchy of coarser meshes using a simple agglomeration method which handles arbitrary element shapes and dimensions. The method is easily extendable to other discontinuous Galerkin discretizations, including the Local DG method and the Interior Penalty method. We demonstrate excellent solver performance for Poisson's equation, provided a flux formulation is used for the operator coarsening and a suitable switch function chosen for the numerical fluxes.