论文标题
自旋轨道共振和潮汐加热对宜居区的内边缘的影响
Effects of Spin-Orbit Resonances and Tidal Heating on the Inner Edge of the Habitable Zone
论文作者
论文摘要
人们对在低质量恒星周围同步旋转的行星的气候动力学和可居住的边界非常关注。但是,其他旋转状态是可能的,尤其是当可以将较高的偏心轨道保持在系统中,包括旋转轨道谐振构型时。此外,随着行星的振荡菌株从植物中移动到apoastron会导致摩擦和潮汐加热,这可能是重要的能源。在这里,我们模拟了用Rocke-3D宜人区域内边缘附近的海洋覆盖行星的气候,并使用洛克3D的太阳星,并利用行星演化软件包Vplanet,以计算绕地球的潮汐加热速率,旋转2600 K和3000 K星。这项研究是第一个使用3D通用循环模型的研究,该模型实现了潮汐加热来研究多种谐振状态的可居住性。我们发现,在没有潮汐加热的情况下,共振状态对内部边缘几乎没有影响,因为对于给定的恒星通量,高阶状态往往比同步旋转器更温暖,但是对于给定的温度,上层状态较干燥。但是,当存在强烈的潮汐加热时,旋转成分意味着可居住条件对系统进化和旋转状态的强烈依赖。由于潮汐和恒星加热都随着轨道距离而减小,因此这会导致紧凑的轨道宽度分隔温带和无法居住的气候。我们总结了这些结果,还将Rocke-3D与使用NCAR CAM4模型的修改版本的内部边缘进行了比较。
Much attention has been given to the climate dynamics and habitable boundaries of synchronously rotating planets around low mass stars. However, other rotational states are possible, particularly when higher eccentricity orbits can be maintained in a system, including spin-orbit resonant configurations. Additionally, the oscillating strain as a planet moves from periastron to apoastron results in friction and tidal heating, which can be an important energy source. Here, we simulate the climate of ocean-covered planets near the inner edge of the habitable zone around M to solar stars with ROCKE-3D, and leverage the planetary evolution software package, VPLanet, to calculate tidal heating rates for Earth-sized planets orbiting 2600 K and 3000 K stars. This study is the first to use a 3-D General Circulation Model that implements tidal heating to investigate habitability for multiple resonant states. We find that in the absence of tidal heating, the resonant state has little impact on the inner edge, because for a given stellar flux, higher-order states tend to be warmer than synchronous rotators, but for a given temperature, have drier upper atmospheres. However, when strong tidal heating is present, the rotational component implies a strong dependence of habitable conditions on the system evolution and rotational state. Since tidal and stellar heating both decrease with orbital distance, this results in a compact orbital width separating temperate and uninhabitable climates. We summarize these results and also compare ROCKE-3D to previously published simulations of the inner edge that used a modified version of the NCAR CAM4 model.