论文标题
Simons天文台:大型孔径望远镜接收器(LATR)集成和验证结果
The Simons Observatory: the Large Aperture Telescope Receiver (LATR) Integration and Validation Results
论文作者
论文摘要
Simons天文台(So)将观察智利阿塔卡马沙漠中Cerro Toco的宇宙微波背景(CMB)。天文台由三个0.5 m的小孔望远镜(SAT)和一个6 m大的孔径望远镜(LAT)组成,涵盖了六个频带,居中,居中,居中左右30、40、90、90、150、230和280 GHz。 SO观察结果将通过表征早期宇宙的特性,测量相对论物种的数量和中微子的质量,改善我们对星系进化的理解并限制宇宙复离的特性,从而改变对宇宙的理解。作为关键仪器,大型孔径望远镜接收器(LATR)旨在冷却$ \ sim $ 60,000的过渡边缘传感器(TES)至直径1.7 m的焦距上的$ <$ 100 mk。 LATR的前所未有的规模推动了复杂的设计。在本文中,我们将首先提供LATR设计的概述。详细讨论了LATR设计的整合和验证,包括机械强度,光学对准以及五个低温阶段(80 K,40 K,40 K,4 K,1 K和100 MK)的低温性能。我们还将讨论在LATR中实现的微波式插图($μ$ MUX)读数系统,并演示了深色原型TES TES BOLOMETER的操作。 $μ$ MUX读数技术使一个同轴循环可以读取$ \ Mathcal {o}(10^3)$ tes tes testors。它在LATR中的实现是对复杂RF链设计的关键验证。 LATR性能的成功验证不仅是Simons天文台中的关键里程碑,还为其他实验提供了宝贵的参考,例如CCAT-PRIME和CMB-S4。
The Simons Observatory (SO) will observe the cosmic microwave background (CMB) from Cerro Toco in the Atacama Desert of Chile. The observatory consists of three 0.5 m Small Aperture Telescopes (SATs) and one 6 m Large Aperture Telescope (LAT), covering six frequency bands centering around 30, 40, 90, 150, 230, and 280 GHz. The SO observations will transform the understanding of our universe by characterizing the properties of the early universe, measuring the number of relativistic species and the mass of neutrinos, improving our understanding of galaxy evolution, and constraining the properties of cosmic reionization. As a critical instrument, the Large Aperture Telescope Receiver (LATR) is designed to cool $\sim$ 60,000 transition-edge sensors (TES) to $<$ 100 mK on a 1.7 m diameter focal plane. The unprecedented scale of the LATR drives a complex design. In this paper, we will first provide an overview of the LATR design. Integration and validation of the LATR design are discussed in detail, including mechanical strength, optical alignment, and cryogenic performance of the five cryogenic stages (80 K, 40 K, 4 K, 1 K, and 100 mK). We will also discuss the microwave-multiplexing ($μ$Mux) readout system implemented in the LATR and demonstrate the operation of dark prototype TES bolometers. The $μ$Mux readout technology enables one coaxial loop to read out $\mathcal{O}(10^3)$ TES detectors. Its implementation within the LATR serves as a critical validation for the complex RF chain design. The successful validation of the LATR performance is not only a critical milestone within the Simons Observatory, it also provides a valuable reference for other experiments, e.g. CCAT-prime and CMB-S4.