论文标题

在n $^3 $ lo和n $^3 $ ll $^\ prime $的背对背限制中的能量能量相关性

The Energy-Energy Correlation in the back-to-back limit at N$^3$LO and N$^3$LL$^\prime$

论文作者

Ebert, Markus A., Mistlberger, Bernhard, Vita, Gherardo

论文摘要

我们介绍了在扰动QCD中计算出的电子 - 峰值歼灭的能量能量相关性(EEC)的分析公式,以在背靠背的限制下近代到临时到接头序言(n $^3 $ lo)。特别是,我们考虑了由电子峰值对歼灭到虚拟光子中以及希格斯玻色子及其随后的包含性衰变中的EEC。我们的计算基于背靠背极限的软共线有效理论(ccet)中的EEC的分解定理。我们从最新的计算横向摩托明的片段化函数(TMDFF)从n $^3 $ lo中获得了我们的计算的最后缺少成分 - 喷气函数。我们将新获得的n $^3 $ jet功能与众所周知的硬功能结合在一起,以在背靠背限制中预测EEC。我们的分析公式的领先先验贡献与先前获得的结果相符,其中$ \ nathcal {n} = 4 $ supersympersymmetric yang-mills理论。我们使用动量总和来获得EEC批量区域的$ n = 2 $ Mellin矩。最后,我们在n $^3 $ ll $^\ prime $精度下以背靠背限制获得了EEC的第一个重新点亮,从而导致$ \ sim 4 $减少峰区域的不确定性,而N $^3 $ ll预测。

We present the analytic formula for the Energy-Energy Correlation (EEC) in electron-positron annihilation computed in perturbative QCD to next-to-next-to-next-to-leading order (N$^3$LO) in the back-to-back limit. In particular, we consider the EEC arising from the annihilation of an electron-positron pair into a virtual photon as well as a Higgs boson and their subsequent inclusive decay into hadrons. Our computation is based on a factorization theorem of the EEC formulated within Soft-Collinear Effective Theory (SCET) for the back-to-back limit. We obtain the last missing ingredient for our computation - the jet function - from a recent calculation of the transverse-momentum dependent fragmentation function (TMDFF) at N$^3$LO. We combine the newly obtained N$^3$LO jet function with the well known hard and soft function to predict the EEC in the back-to-back limit. The leading transcendental contribution of our analytic formula agrees with previously obtained results in $\mathcal{N} = 4$ supersymmetric Yang-Mills theory. We obtain the $N=2$ Mellin moment of the bulk region of the EEC using momentum sum rules. Finally, we obtain the first resummation of the EEC in the back-to-back limit at N$^3$LL$^\prime$ accuracy, resulting in a factor of $\sim 4$ reduction of uncertainties in the peak region compared to N$^3$LL predictions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源