论文标题
重型离子碰撞中的深度学习喷气
Deep learning jet modifications in heavy-ion collisions
论文作者
论文摘要
通常,通过测量相对于质子 - 普罗顿基线的JET可观察物的分布来评估,在重型离子碰撞中产生的热QCD介质中的喷气相互作用通常可以评估。然而,陡峭的生产范围对小能量损失产生了强烈的偏见,该损失使对测得的射流集合中介质效应的影响直接解释。现代机器学习技术提供了以逐射流为基础解决此问题的潜力。在本文中,我们采用卷积神经网络(CNN)来诊断使用混合强/弱耦合模型对训练和验证进行训练和验证的修改。通过分析重离子碰撞中测得的喷气机,我们提取原始的横向动量,即,就能量损耗率而言,相同的射流的横向动量没有通过培养基。尽管有许多波动来源,但我们取得了良好的表现,并强调了结果的解释性。我们观察到,射流锥体中软颗粒的角度分布及其对总射流能量的相对贡献包含明显的区分功率,可以利用这些功率来量身定制可观察到的可观察力,从而很好地估计了能量损耗率。通过预测的能量损失比,我们研究了一组可观察物,以估计它们对偏见效应的敏感性,并揭示其与更等效的喷气群体相比,即一组具有相似初始能量的喷气机。最后,我们还展示了深度学习技术在分析喷射淬灭的几何方面的潜力,例如中等内部穿越长度或硬散射在横向平面中的位置,从而为层析学研究开辟了新的可能性。
Jet interactions in a hot QCD medium created in heavy-ion collisions are conventionally assessed by measuring the modification of the distributions of jet observables with respect to the proton-proton baseline. However, the steeply falling production spectrum introduces a strong bias toward small energy losses that obfuscates a direct interpretation of the impact of medium effects in the measured jet ensemble. Modern machine learning techniques offer the potential to tackle this issue on a jet-by-jet basis. In this paper, we employ a convolutional neural network (CNN) to diagnose such modifications from jet images where the training and validation is performed using the hybrid strong/weak coupling model. By analyzing measured jets in heavy-ion collisions, we extract the original jet transverse momentum, i.e., the transverse momentum of an identical jet that did not pass through a medium, in terms of an energy loss ratio. Despite many sources of fluctuations, we achieve good performance and put emphasis on the interpretability of our results. We observe that the angular distribution of soft particles in the jet cone and their relative contribution to the total jet energy contain significant discriminating power, which can be exploited to tailor observables that provide a good estimate of the energy loss ratio. With a well-predicted energy loss ratio, we study a set of jet observables to estimate their sensitivity to bias effects and reveal their medium modifications when compared to a more equivalent jet population, i.e., a set of jets with similar initial energy. Finally, we also show the potential of deep learning techniques in the analysis of the geometrical aspects of jet quenching such as the in-medium traversed length or the position of the hard scattering in the transverse plane, opening up new possibilities for tomographic studies.