论文标题
使用SOAR(用于轨道空气动力学研究的卫星)的轨内空气动力系数测量
In-Orbit Aerodynamic Coefficient Measurements using SOAR (Satellite for Orbital Aerodynamics Research)
论文作者
论文摘要
轨道空气动力学研究(SOAR)的卫星是一个立方体任务,该任务将于2021年推出,以调查不同材料与非常低的地球轨道(VLEO)中不同材料与大气流动状态之间的相互作用。在这些高度上提高对气体表面相互作用的知识,并鉴定出可以最大程度地减少阻力或改善空气动力控制的新型材料的识别对于可以在较低海拔轨道上运行的未来航天器的设计很重要。这样的卫星可能会更小,更便宜,或者可以提供改进的地球观察数据或通信链接预算和延迟。使用精确的轨道和态度确定信息以及测得的大气流量特征可以研究轨道中卫星所经历的力和扭矩,并计算出空气动力学系数的估计。本文介绍了Soar任务的科学概念和设计。描述了使用最小二乘轨道测定和自由参数拟合过程从测得的轨道,态度和原位大气数据中恢复空气动力系数的方法,并估计已解决空气动力学系数的实验不确定性。提出的结果表明,卫星设计和实验方法的组合能够清楚地说明不同表面入射角的阻力和升力系数的变化。在大约300 km处发现了阻力系数测量的最低不确定性,而升力系数的测量可将轨道高度降低到200 km。
The Satellite for Orbital Aerodynamics Research (SOAR) is a CubeSat mission, due to be launched in 2021, to investigate the interaction between different materials and the atmospheric flow regime in very low Earth orbits (VLEO). Improving knowledge of the gas-surface interactions at these altitudes and identification of novel materials that can minimise drag or improve aerodynamic control are important for the design of future spacecraft that can operate in lower altitude orbits. Such satellites may be smaller and cheaper to develop or can provide improved Earth observation data or communications link-budgets and latency. Using precise orbit and attitude determination information and the measured atmospheric flow characteristics the forces and torques experienced by the satellite in orbit can be studied and estimates of the aerodynamic coefficients calculated. This paper presents the scientific concept and design of the SOAR mission. The methodology for recovery of the aerodynamic coefficients from the measured orbit, attitude, and in-situ atmospheric data using a least-squares orbit determination and free-parameter fitting process is described and the experimental uncertainty of the resolved aerodynamic coefficients is estimated. The presented results indicate that the combination of the satellite design and experimental methodology are capable of clearly illustrating the variation of drag and lift coefficient for differing surface incidence angle. The lowest uncertainties for the drag coefficient measurement are found at approximately 300 km, whilst the measurement of lift coefficient improves for reducing orbital altitude to 200 km.