论文标题

信息理论分割通过介入误差最大化

Information-Theoretic Segmentation by Inpainting Error Maximization

论文作者

Savarese, Pedro, Kim, Sunnie S. Y., Maire, Michael, Shakhnarovich, Greg, McAllester, David

论文摘要

我们从信息理论的角度研究了图像分割,提出了一种新颖的对抗方法,该方法通过将图像将图像划分为最大独立的集合来执行无监督的分割。更具体地说,我们将图像像素分组为前景和背景,目的是最大程度地减少一个集合的可预测性。易于计算的损失驱动贪婪的搜索过程,以最大程度地提高这些分区的介入误差。我们的方法不涉及训练深网,在计算上是便宜的,不可或缺的,甚至适用于单个未标记的图像。实验表明,它在无监督的细分质量方面实现了新的最新最新,同时比竞争方法更快,更一般。

We study image segmentation from an information-theoretic perspective, proposing a novel adversarial method that performs unsupervised segmentation by partitioning images into maximally independent sets. More specifically, we group image pixels into foreground and background, with the goal of minimizing predictability of one set from the other. An easily computed loss drives a greedy search process to maximize inpainting error over these partitions. Our method does not involve training deep networks, is computationally cheap, class-agnostic, and even applicable in isolation to a single unlabeled image. Experiments demonstrate that it achieves a new state-of-the-art in unsupervised segmentation quality, while being substantially faster and more general than competing approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源