论文标题

通过训练有素的模型来确定混合发展方法的上下文因素

Determining Context Factors for Hybrid Development Methods with Trained Models

论文作者

Klünder, Jil, Karajic, Dzejlana, Tell, Paolo, Karras, Oliver, Münkel, Christian, Münch, Jürgen, MacDonell, Stephen G., Hebig, Regina, Kuhrmann, Marco

论文摘要

为特定项目环境选择合适的开发方法是过程设计中最具挑战性的活动之一。每个项目都是独一无二的,因此必须考虑许多上下文因素。最近的研究采取了一些初步步骤,用于统计上构建混合发展方法,但很少关注影响方法和实践选择的上下文因素的特殊性。在本文中,我们利用探索性因素分析和逻辑回归分析来学习此类上下文因素,并确定与这些因素相关的方法。我们的分析基于Helena数据集的829个数据点。我们提供了五个基本簇,这些方法包括多达10种方法,这些方法为设计混合发展方法奠定了基础。使用训练有素的模型对五个群集的分析仅揭示了一些上下文因素,例如项目/产品规模和目标应用领域,这些因素似乎会显着影响方法的选择。在确定的方法簇的上下文中对这些实践的扩展描述性分析也表明,在特定项目环境中使用的相关实践集的合并。

Selecting a suitable development method for a specific project context is one of the most challenging activities in process design. Every project is unique and, thus, many context factors have to be considered. Recent research took some initial steps towards statistically constructing hybrid development methods, yet, paid little attention to the peculiarities of context factors influencing method and practice selection. In this paper, we utilize exploratory factor analysis and logistic regression analysis to learn such context factors and to identify methods that are correlated with these factors. Our analysis is based on 829 data points from the HELENA dataset. We provide five base clusters of methods consisting of up to 10 methods that lay the foundation for devising hybrid development methods. The analysis of the five clusters using trained models reveals only a few context factors, e.g., project/product size and target application domain, that seem to significantly influence the selection of methods. An extended descriptive analysis of these practices in the context of the identified method clusters also suggests a consolidation of the relevant practice sets used in specific project contexts.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源