论文标题

SU(N)Q-TODA方程来自质量变形ABJM理论

SU(N) q-Toda equations from mass deformed ABJM theory

论文作者

Nosaka, Tomoki

论文摘要

众所周知,u(n)x u(n+m)abjm理论的分区函数满足了一组双线性关系,最近发现它以宏伟的分区函数写成,是Q-Painleve III_3方程。在本文中,我们提出了ABJM理论的类似双线关系,n = 6保留了质量参数的任意复杂值的质量变形,我们通过使用各种n,k,m和质量参数的分区函数的确切值来提供多个非平凡检查。对于由整数标记的质量参数的特定选择,a $ as $ m_1 = m_2 =-πi(ν-2a)/ν$,双线性关系对应于offine su($ν$)toda toda toda toda toda toda toda方程的q命名。

It is known that the partition functions of the U(N) x U(N+M) ABJM theory satisfy a set of bilinear relations, which, written in the grand partition function, was recently found to be the q-Painleve III_3 equation. In this paper we have suggested a similar bilinear relation holds for the ABJM theory with N=6 preserving mass deformation for an arbitrary complex value of mass parameter, to which we have provided several non-trivial checks by using the exact values of the partition functions for various N,k,M and the mass parameter. For particular choices of the mass parameters labeled by integers $ν,a$ as $m_1=m_2=-πi(ν-2a)/ν$, the bilinear relation corresponds to the q-deformation of the affine SU($ν$) Toda equation in $τ$-form.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源