论文标题

在3D医学图像中的一击对象定位的相对位置回归的对比度学习

Contrastive Learning of Relative Position Regression for One-Shot Object Localization in 3D Medical Images

论文作者

Lei, Wenhui, Xu, Wei, Gu, Ran, Fu, Hao, Zhang, Shaoting, Wang, Guotai

论文摘要

深度学习网络已显示出令人鼓舞的性能,以在内侧图像中进行准确的对象定位,但需要大量注释的数据进行监督培训,这是昂贵且专业的繁重的。为了解决这个问题,我们为体积医学图像中的器官和里程碑定位提供了一个单发框架,该框架在训练阶段不需要任何注释,并且可以在推理阶段提供给出的测试图像(参考)图像中找到任何地标或器官。我们的主要思想来自来自不同人体的组织和器官具有相似的相对位置和背景。因此,我们可以预测其非本地斑块的相对位置,从而定位目标器官。我们的框架由三个部分组成:(1)一个投影网络训练有素,可以预测不需要人类注释的同一体积的两个贴片之间的3D偏移。在推理阶段,它将参考图像中的一个给定的地标作为支撑贴片,并预测从随机贴片到测试(查询)体积中相应地标的偏移。 (2)粗到五个框架包含两个投影网络,提供了目标的更准确的定位。 (3)基于粗到精细的模型,我们将器官边界箱(B-box)检测转移到查询量中沿x,y和z方向的六个极端点。从头颈(HAN)CT体积进行多器官定位的实验表明,我们的方法实时获得了竞争性能,这比具有相同设置的模板匹配方法更准确,10^5倍。代码可用:https://github.com/lwhyc/rpr-loc。

Deep learning networks have shown promising performance for accurate object localization in medial images, but require large amount of annotated data for supervised training, which is expensive and expertise burdensome. To address this problem, we present a one-shot framework for organ and landmark localization in volumetric medical images, which does not need any annotation during the training stage and could be employed to locate any landmarks or organs in test images given a support (reference) image during the inference stage. Our main idea comes from that tissues and organs from different human bodies have a similar relative position and context. Therefore, we could predict the relative positions of their non-local patches, thus locate the target organ. Our framework is composed of three parts: (1) A projection network trained to predict the 3D offset between any two patches from the same volume, where human annotations are not required. In the inference stage, it takes one given landmark in a reference image as a support patch and predicts the offset from a random patch to the corresponding landmark in the test (query) volume. (2) A coarse-to-fine framework contains two projection networks, providing more accurate localization of the target. (3) Based on the coarse-to-fine model, we transfer the organ boundingbox (B-box) detection to locating six extreme points along x, y and z directions in the query volume. Experiments on multi-organ localization from head-and-neck (HaN) CT volumes showed that our method acquired competitive performance in real time, which is more accurate and 10^5 times faster than template matching methods with the same setting. Code is available: https://github.com/LWHYC/RPR-Loc.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源