论文标题

使用钥匙片ROI解析,由多相MR体积从多相MR体积进行表征的完全自动化的肝肿瘤定位:一种受医师启发的方法

Fully-Automated Liver Tumor Localization and Characterization from Multi-Phase MR Volumes Using Key-Slice ROI Parsing: A Physician-Inspired Approach

论文作者

Lai, Bolin, Wu, Yuhsuan, Bai, Xiaoyu, Zhou, Xiao-Yun, Wang, Peng, Cai, Jinzheng, Huo, Yuankai, Huang, Lingyun, Xia, Yong, Xiao, Jing, Lu, Le, Hu, Heping, Harrison, Adam

论文摘要

使用放射学扫描鉴定肝肿瘤对于适当的患者治疗至关重要。这是高度挑战的,因为即使使用多相磁共振(MR)图像,顶级放射科医生仅实现大约80%的F1评分(肝细胞癌(HCC)与其他)。因此,计算机辅助诊断(CAD)解决方案有很大的动力。一个至关重要的挑战是坚固地解析3D MR数量,以定位可诊断的感兴趣区域(ROI),尤其是对于边缘案例。在本文中,我们使用钥匙片解析器(KSP)分解了此问题,该问题通过首先识别密钥切片,然后将其相应的密钥ROI定位来模拟医师工作流。为了实现鲁棒性,KSP还使用了曲线的放置和检测置信度重新加权。迄今为止,我们评估了最大的多相MR肝病变测试数据集(430例活检证实的患者)。实验表明,我们的KSP可以将可诊断的ROI定位为具有高可靠性的可诊断ROI:87%的患者的平均3D重叠与地面真相> = 40%> 40%,而使用最佳测试的检测器仅79%。与分类器相结合时,我们获得了HCC与其他F1分数为0.801,提供了完全自动化的CAD性能,与顶级人类医生相当。

Using radiological scans to identify liver tumors is crucial for proper patient treatment. This is highly challenging, as top radiologists only achieve F1 scores of roughly 80% (hepatocellular carcinoma (HCC) vs. others) with only moderate inter-rater agreement, even when using multi-phase magnetic resonance (MR) imagery. Thus, there is great impetus for computer-aided diagnosis (CAD) solutions. A critical challenge is to robustly parse a 3D MR volume to localize diagnosable regions of interest (ROI), especially for edge cases. In this paper, we break down this problem using a key-slice parser (KSP), which emulates physician workflows by first identifying key slices and then localizing their corresponding key ROIs. To achieve robustness, the KSP also uses curve-parsing and detection confidence re-weighting. We evaluate our approach on the largest multi-phase MR liver lesion test dataset to date (430 biopsy-confirmed patients). Experiments demonstrate that our KSP can localize diagnosable ROIs with high reliability: 87% patients have an average 3D overlap of >= 40% with the ground truth compared to only 79% using the best tested detector. When coupled with a classifier, we achieve an HCC vs. others F1 score of 0.801, providing a fully-automated CAD performance comparable to top human physicians.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源