论文标题
图形和快速的G-Framelet变换上的删除框架系统
Decimated Framelet System on Graphs and Fast G-Framelet Transforms
论文作者
论文摘要
图表示学习具有许多现实世界的应用,从超分辨率成像,3D计算机视觉到药物重新利用,蛋白质分类,社交网络分析。图形数据的足够表示对于用于图形结构数据的统计或机器学习模型的学习性能至关重要。在本文中,我们提出了一个用于图形数据的新型多尺度表示系统,称为被删除的Framelets,该系统在图上形成了局部紧密框架。被删除的帧系统允许在粗粒链上存储图形数据表示,并在多尺度上处理图形数据,在每个尺度上,数据存储在子图中。基于此,我们建立了通过建设性数据驱动的滤波器库在多分辨率上分解和重建图形数据的分解和重建的dramelet变换。图形框架建立在基于链条的正顺序基础上,该基础支持快速的图形傅立叶变换。由此,我们为尺寸N的尺寸N的线性计算复杂性O(n)提供了一个快速算法,它具有线性计算复杂性O(n)。被删除的Framelets和FGT的理论通过数值示例验证了随机图的数值示例。实际应用程序(包括流量网络的多解决分析)以及图形分类任务的图形神经网络证明了有效性。
Graph representation learning has many real-world applications, from super-resolution imaging, 3D computer vision to drug repurposing, protein classification, social networks analysis. An adequate representation of graph data is vital to the learning performance of a statistical or machine learning model for graph-structured data. In this paper, we propose a novel multiscale representation system for graph data, called decimated framelets, which form a localized tight frame on the graph. The decimated framelet system allows storage of the graph data representation on a coarse-grained chain and processes the graph data at multi scales where at each scale, the data is stored at a subgraph. Based on this, we then establish decimated G-framelet transforms for the decomposition and reconstruction of the graph data at multi resolutions via a constructive data-driven filter bank. The graph framelets are built on a chain-based orthonormal basis that supports fast graph Fourier transforms. From this, we give a fast algorithm for the decimated G-framelet transforms, or FGT, that has linear computational complexity O(N) for a graph of size N. The theory of decimated framelets and FGT is verified with numerical examples for random graphs. The effectiveness is demonstrated by real-world applications, including multiresolution analysis for traffic network, and graph neural networks for graph classification tasks.