论文标题

热带自由冷却数据中心控制的深度加固学习

Deep Reinforcement Learning for Tropical Air Free-Cooled Data Center Control

论文作者

Van Le, Duc, Wang, Rongrong, Liu, Yingbo, Tan, Rui, Wong, Yew-Wah, Wen, Yonggang

论文摘要

由于全年高环境温度和相对湿度(RH)的独特挑战,在热带区域中不存在空气冷却数据中心(DC)。由于监管机构的提示提高了直流温度设定点,因此可以耐受高温和RH的服务器的可用性增加,这使热带空气自由冷却DC的可行性阐明了。但是,由于复杂的心理动力学,在热带地区运行空气自由冷却的直流通常需要自适应控制供应空气状况,以维持服务器的计算性能和可靠性。本文研究了在一定阈值以下的自由冷却的热带DC中控制供应气温和RH的问题。为了实现目标,我们将控制问题作为马尔可夫决策过程,并应用深入的强化学习(DRL)来学习最大程度地减少冷却能量的控制政策,同时满足供应空气温度和RH的需求。我们还开发了有限的DRL解决方案,以改善性能。基于从空气自由冷却测试台收集的真实数据痕迹的广泛评估以及在不受约束和受约束的DRL方法之间的比较以及其他两种基线方法表明我们提出的解决方案的出色性能。

Air free-cooled data centers (DCs) have not existed in the tropical zone due to the unique challenges of year-round high ambient temperature and relative humidity (RH). The increasing availability of servers that can tolerate higher temperatures and RH due to the regulatory bodies' prompts to raise DC temperature setpoints sheds light upon the feasibility of air free-cooled DCs in tropics. However, due to the complex psychrometric dynamics, operating the air free-cooled DC in tropics generally requires adaptive control of supply air condition to maintain the computing performance and reliability of the servers. This paper studies the problem of controlling the supply air temperature and RH in a free-cooled tropical DC below certain thresholds. To achieve the goal, we formulate the control problem as Markov decision processes and apply deep reinforcement learning (DRL) to learn the control policy that minimizes the cooling energy while satisfying the requirements on the supply air temperature and RH. We also develop a constrained DRL solution for performance improvements. Extensive evaluation based on real data traces collected from an air free-cooled testbed and comparisons among the unconstrained and constrained DRL approaches as well as two other baseline approaches show the superior performance of our proposed solutions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源