论文标题

贝叶斯图神经网络,用于基于应变的裂纹定位

Bayesian graph neural networks for strain-based crack localization

论文作者

Mylonas, Charilaos, Tsialiamanis, George, Worden, Keith, Chatzi, Eleni N.

论文摘要

基于振动的损伤定位技术的常见缺点是,局部损坏,即小裂纹对结构的光谱特征的影响有限。相比之下,即使是在特定的负载条件下,最小的缺陷也会引起具有可预测空间构型的局部应变浓度。但是,小缺陷对菌株的影响很快就与缺陷的距离迅速衰减,从而使基于菌株的定位变得更具挑战性。在这项工作中,尝试以完全数据驱动的方式将裂纹位置的后部分布进行近似,给定在结构上任意离散位置的任意动态应变测量。该提出的技术利用图形神经网络(GNN)和贝叶斯神经网络可扩展学习的最新发展。通过在离散位置通过动态应变场测量的模式来推断未知裂纹位置的问题证明了这一技术。该数据集由在随机时间依赖的激发下对空心管的模拟组成,并随机采样裂纹几何形状和方向。

A common shortcoming of vibration-based damage localization techniques is that localized damages, i.e. small cracks, have a limited influence on the spectral characteristics of a structure. In contrast, even the smallest of defects, under particular loading conditions, cause localized strain concentrations with predictable spatial configuration. However, the effect of a small defect on strain decays quickly with distance from the defect, making strain-based localization rather challenging. In this work, an attempt is made to approximate, in a fully data-driven manner, the posterior distribution of a crack location, given arbitrary dynamic strain measurements at arbitrary discrete locations on a structure. The proposed technique leverages Graph Neural Networks (GNNs) and recent developments in scalable learning for Bayesian neural networks. The technique is demonstrated on the problem of inferring the position of an unknown crack via patterns of dynamic strain field measurements at discrete locations. The dataset consists of simulations of a hollow tube under random time-dependent excitations with randomly sampled crack geometry and orientation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源