论文标题
无限的半不变图片和共符号
Infinitesimal semi-invariant pictures and co-amalgamation
论文作者
论文摘要
本文的目的是研究null根附近的驯服世代代数的半不变图片的局部结构。使用我们称之为共摩am的结构,我们表明这种本地结构是由一系列自注明nakayama代数的半不变图片完全描述的。然后,我们使用类似群集的结构来描述该局部结构的锥体,我们称之为支持常规簇。最后,我们表明局部结构在集群倾斜下(线性线性)不变。
The purpose of this paper is to study the local structure of the semi-invariant picture of a tame hereditary algebra near the null root. Using a construction that we call co-amalgamation, we show that this local structure is completely described by the semi-invariant pictures of a collection of self-injective Nakayama algebras. We then describe the cones of this local structure using cluster-like structures that we call support regular clusters. Finally, we show that the local structure is (piecewise linearly) invariant under cluster tilting.