论文标题
随机超流式通货膨胀的曲率扰动的非高斯尾巴:对原始黑洞产生的影响
Non-Gaussian tail of the curvature perturbation in stochastic ultra-slow-roll inflation: implications for primordial black hole production
论文作者
论文摘要
我们考虑超流滚(USR)通胀中的量子扩散。使用$Δn$形式主义,我们介绍了USR期间曲率扰动的概率分布$ p(\ MATHCAL {r})的第一个随机计算。我们捕获了系统的非线性,并以短波长模式的随机踢解决了粗粒背景的耦合演变,同时又与随机背景周围的模式演变一起。这导致了一个非马克维亚过程,我们从中确定了$ p(\ Mathcal {r})$的高度非高斯尾巴。在研究可行模型中原始黑洞的产生时,我们发现在USR期间,随机效应与高斯近似相比,其丰度增加了$ \ sim 10^5 $。
We consider quantum diffusion in ultra-slow-roll (USR) inflation. Using the $ΔN$ formalism, we present the first stochastic calculation of the probability distribution $P(\mathcal{R})$ of the curvature perturbation during USR. We capture the non-linearity of the system, solving the coupled evolution of the coarse-grained background with random kicks from the short wavelength modes, simultaneously with the mode evolution around the stochastic background. This leads to a non-Markovian process from which we determine the highly non-Gaussian tail of $P(\mathcal{R})$. Studying the production of primordial black holes in a viable model, we find that stochastic effects during USR increase their abundance by a factor $\sim 10^5$ compared to the Gaussian approximation.