论文标题
h $ _2 $质量 - 质量关系来自3D数值模拟的喷气驱动分子流出
H$_2$ mass-velocity relationship from 3D numerical simulations of jet-driven molecular outflows
论文作者
论文摘要
先前的数值研究表明,在ProtoStellar流出中,质量分布$ M(v)$可以通过破碎的功率定律$ \ propto v^{ - γ} $很好地描述。另一方面,最近对流出样本的观察结果表明,与$ m(v)$密切相关的CO强度分布遵循指数法$ \ propto \ exp \ exp(-v/v_0)$。在目前的工作中,我们重新审视了喷气驱动的Protostellar流出的质量关系关系$ m(v)$的物理起源。我们研究了流出的不同区域的各自贡献,从扫荡的环境气体到喷气机。我们使用流体动力码yguazu-a进行了在分子云中传播到分子云的3D数值模拟。该代码考虑了原子和离子物种,并经过修改以包括h $ _2 $ gas。我们发现,通过排除喷气式贡献,$ m(v)$非常适合单个指数法,$ v_0 $在观测值范围内很好。喷射贡献导致质量关系中的其他组成部分。发现这种经验质量 - 速度关系在流出中是有效的。指数$ v_0 $在时间上几乎是恒定的,并且对于环境介质和喷气材料之间的混合水平。通常,$ v_0 $仅显示弱空间依赖性。 L1157流出的简单建模成功地重现了观察到的CO强度关系的各个组件。我们的模拟表明,这些成分分别追踪扫荡气体的流出腔和沿射流所夹带的材料。 JET驱动的流出模型自然解释了CO强度指数定律。夹带的材料在塑造质量型剖面方面起着重要作用。
Previous numerical studies have shown that in protostellar outflows, the mass-velocity distribution $m(v)$ can be well described by a broken power law $\propto v^{- γ}$. On the other hand, recent observations of a sample of outflows show that the CO intensity-velocity distribution, closely related to $m(v)$, follows an exponential law $\propto \exp(-v/v_0)$. In the present work, we revisit the physical origin of the mass-velocity relationship $m(v)$ in jet-driven protostellar outflows. We investigate the respective contributions of the different regions of the outflow, from the swept-up ambient gas to the jet. We performed 3D numerical simulations of a protostellar jet propagating into a molecular cloud using the hydrodynamical code Yguazu-a. The code takes into account atomic and ionic species and was modified to include the H$_2$ gas. We find that by excluding the jet contribution, $m(v)$ is satisfyingly fitted with a single exponential law, with $v_0$ well in the range of observational values. The jet contribution results in additional components in the mass-velocity relationship. This empirical mass-velocity relationship is found to be valid locally in the outflow. The exponent $v_0$ is almost constant in time and for a given level of mixing between the ambient medium and the jet material. In general, $v_0$ displays only a weak spatial dependence. A simple modeling of the L1157 outflow successfully reproduces the various components of the observed CO intensity-velocity relationship. Our simulations indicate that these components trace the outflow cavity of swept-up gas and the material entrained along the jet, respectively. The CO intensity-velocity exponential law is naturally explained by the jet-driven outflow model. The entrained material plays an important role in shaping the mass-velocity profile.