论文标题

EventHands:实时神经3D手姿势估算事件流

EventHands: Real-Time Neural 3D Hand Pose Estimation from an Event Stream

论文作者

Rudnev, Viktor, Golyanik, Vladislav, Wang, Jiayi, Seidel, Hans-Peter, Mueller, Franziska, Elgharib, Mohamed, Theobalt, Christian

论文摘要

来自单眼视频的3D手姿势估算是一个长期且具有挑战性的问题,现在看到了强劲的上涨。在这项工作中,我们首次使用单个事件摄像机来解决它,即,异步视觉传感器对亮度变化做出反应。我们的EventHands方法具有以前没有使用单个RGB或深度摄像头证明的特征,例如低数据吞吐量的高时间分辨率和1000 Hz时的实时性能。由于与经典摄像机相比,事件摄像机的数据模式不同,因此无法直接应用并重新训练事件流的现有方法。因此,我们设计了一种新的神经方法,该方法接受适合学习的新事件流表示,该表示对新生成的合成事件流进行了培训,并可以推广到真实数据。实验表明,就精度及其捕获前所未有的速度手动运动的能力而言,使用颜色(或深度)摄像头的近期单眼方法的表现优于最新的单眼方法。我们的方法,事件流模拟器和数据集公开可用;请参阅https://4dqv.mpi-inf.mpg.de/eventhands/

3D hand pose estimation from monocular videos is a long-standing and challenging problem, which is now seeing a strong upturn. In this work, we address it for the first time using a single event camera, i.e., an asynchronous vision sensor reacting on brightness changes. Our EventHands approach has characteristics previously not demonstrated with a single RGB or depth camera such as high temporal resolution at low data throughputs and real-time performance at 1000 Hz. Due to the different data modality of event cameras compared to classical cameras, existing methods cannot be directly applied to and re-trained for event streams. We thus design a new neural approach which accepts a new event stream representation suitable for learning, which is trained on newly-generated synthetic event streams and can generalise to real data. Experiments show that EventHands outperforms recent monocular methods using a colour (or depth) camera in terms of accuracy and its ability to capture hand motions of unprecedented speed. Our method, the event stream simulator and the dataset are publicly available; see https://4dqv.mpi-inf.mpg.de/EventHands/

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源