论文标题
从神经网络的天空中的动态阶段视频中学习顺序参数
Learning Order Parameters from Videos of Dynamical Phases for Skyrmions with Neural Networks
论文作者
论文摘要
识别动态现象(例如,动态阶段)和从视频中的动态过程的能力,然后抽象物理概念并揭示物理定律,这是人类智能的核心。本文的主要目的是使用神经网络对某些视频的动态阶段进行分类,并证明神经网络可以从中学习物理概念。为此,我们采用多个神经网络来识别基于粒子的天空模型的静态相(图像格式)和动态阶段(视频格式)。我们的结果表明,没有任何先验知识的神经网络不仅可以正确地对这些阶段进行分类,还可以预测与通过模拟获得的相一致的相边界。我们进一步提出了一个参数可视化方案,以解释神经网络学到了什么。我们表明,神经网络可以从动态阶段的视频中学习两个阶参数,并预测两个阶参数的临界值。最后,我们证明只需要两个阶参数来识别天空动态阶段的视频。它表明,此参数可视化方案可用于确定需要多少阶参数来完全识别输入阶段。我们的工作阐明了神经网络在发现新的物理概念并揭示视频中未知但物理定律的未来使用。
The ability to recognize dynamical phenomena (e.g., dynamical phases) and dynamical processes in physical events from videos, then to abstract physical concepts and reveal physical laws, lies at the core of human intelligence. The main purposes of this paper are to use neural networks for classifying the dynamical phases of some videos and to demonstrate that neural networks can learn physical concepts from them. To this end, we employ multiple neural networks to recognize the static phases (image format) and dynamical phases (video format) of a particle-based skyrmion model. Our results show that neural networks, without any prior knowledge, can not only correctly classify these phases, but also predict the phase boundaries which agree with those obtained by simulation. We further propose a parameter visualization scheme to interpret what neural networks have learned. We show that neural networks can learn two order parameters from videos of dynamical phases and predict the critical values of two order parameters. Finally, we demonstrate that only two order parameters are needed to identify videos of skyrmion dynamical phases. It shows that this parameter visualization scheme can be used to determine how many order parameters are needed to fully recognize the input phases. Our work sheds light on the future use of neural networks in discovering new physical concepts and revealing unknown yet physical laws from videos.