论文标题
自主搜索中的剥削和探索(DCEE)双重控制
Dual Control for Exploitation and Exploration (DCEE) in Autonomous Search
论文作者
论文摘要
本文提出了一个最佳的自主搜索框架,即探索和剥削的双重控制(DCEE),以在未知环境中未知位置的目标。来源定位是为了在部分未知的环境中找到大气危险物质释放的来源。本文提出了解决此自主搜索问题的控制理论方法。为了应对一个未知的目标位置,在每个步骤中,目标位置由贝叶斯推断估算。然后采取控制措施,以最大程度地减少未来机器人位置与目标位置的假设未来估计之间的误差。后者是通过假设的测量值在相应的未来机器人位置(由于控制动作)而产生的,而当前对目标位置的估计为先验。它表明,这种方法可以考虑下一个机器人位置和目标位置估计的误差以及估计值的不确定性。这种方法不仅在源位置,还包括未知的本地环境(例如风速和方向),进一步扩展到了案例。与当前的信息理论方法不同,这种新的控制理论方法通过将机器人推向估计目标位置,同时降低其估计不确定性,从而在未知环境中实现了剥削和勘探之间的最佳权衡。该方案是使用移动机器人上的粒子过滤实施的。仿真和实验研究表明该方法的表现有希望的表现。讨论并比较了所提出的方法,信息路径计划,双重控制和经典模型预测控制之间的关系。
This paper proposes an optimal autonomous search framework, namely Dual Control for Exploration and Exploitation (DCEE), for a target at unknown location in an unknown environment. Source localisation is to find sources of atmospheric hazardous material release in a partially unknown environment. This paper proposes a control theoretic approach to this autonomous search problem. To cope with an unknown target location, at each step, the target location is estimated by Bayesian inference. Then a control action is taken to minimise the error between future robot position and the hypothesised future estimation of the target location. The latter is generated by hypothesised measurements at the corresponding future robot positions (due to the control action) with the current estimation of the target location as a prior. It shows that this approach can take into account both the error between the next robot position and the estimate of the target location, and the uncertainty of the estimate. This approach is further extended to the case with not only an unknown source location, but also an unknown local environment (e.g. wind speed and direction). Different from current information theoretic approaches, this new control theoretic approach achieves the optimal trade-off between exploitation and exploration in a unknown environment with an unknown target by driving the robot moving towards estimated target location while reducing its estimation uncertainty. This scheme is implemented using particle filtering on a mobile robot. Simulation and experimental studies demonstrate promising performance of the proposed approach. The relationships between the proposed approach, informative path planning, dual control, and classic model predictive control are discussed and compared.