论文标题
深度神经网络可有效学习有限数据的高维希尔伯特评估功能
Deep Neural Networks Are Effective At Learning High-Dimensional Hilbert-Valued Functions From Limited Data
论文作者
论文摘要
来自样品点的标量值函数的准确近似是计算科学中的关键任务。最近,使用深神经网络(DNN)的机器学习已成为科学计算的有前途的工具,在数据或问题域的尺寸很大的问题上取得了令人印象深刻的结果。这项工作拓宽了这一观点,重点是近似于希尔伯特价值的函数,即在可分离但通常是无限二维的希尔伯特空间中取值。这是在科学和工程问题中引起的,尤其是涉及参数偏微分方程(PDE)的解决方案的问题。此类问题具有挑战性:1)获取的样本很昂贵,2)功能域是高维的,3)范围在于希尔伯特空间。我们的贡献是双重的。首先,我们为霍明型功能的DNN培训提供了新的结果,并带有所谓的隐藏各向异性。该结果介绍了DNN培训程序和完整的理论分析,并明确保证了错误和样本复杂性。在近似过程中出现的三个关键误差中,界限限制为:最佳近似,测量和物理离散错误。我们的结果表明,存在通过执行型的DNN进行学习希尔伯特评估函数的程序(尽管非标准),但其性能既不在当前的一流方案。它为DNNS在此类问题上的表现效果如何,给出了基准下限。其次,我们检查是否可以通过不同类型的架构和培训来实践实现更好的绩效。我们提供了初步的数值结果,说明了DNN在参数PDE上的实际性能。我们考虑不同的参数,修改DNN体系结构以获得更好和竞争的结果,并将其与当前的一流方案进行比较。
Accurate approximation of scalar-valued functions from sample points is a key task in computational science. Recently, machine learning with Deep Neural Networks (DNNs) has emerged as a promising tool for scientific computing, with impressive results achieved on problems where the dimension of the data or problem domain is large. This work broadens this perspective, focusing on approximating functions that are Hilbert-valued, i.e. take values in a separable, but typically infinite-dimensional, Hilbert space. This arises in science and engineering problems, in particular those involving solution of parametric Partial Differential Equations (PDEs). Such problems are challenging: 1) pointwise samples are expensive to acquire, 2) the function domain is high dimensional, and 3) the range lies in a Hilbert space. Our contributions are twofold. First, we present a novel result on DNN training for holomorphic functions with so-called hidden anisotropy. This result introduces a DNN training procedure and full theoretical analysis with explicit guarantees on error and sample complexity. The error bound is explicit in three key errors occurring in the approximation procedure: the best approximation, measurement, and physical discretization errors. Our result shows that there exists a procedure (albeit non-standard) for learning Hilbert-valued functions via DNNs that performs as well as, but no better than current best-in-class schemes. It gives a benchmark lower bound for how well DNNs can perform on such problems. Second, we examine whether better performance can be achieved in practice through different types of architectures and training. We provide preliminary numerical results illustrating practical performance of DNNs on parametric PDEs. We consider different parameters, modifying the DNN architecture to achieve better and competitive results, comparing these to current best-in-class schemes.