论文标题

探索深度神经网络和转移学习,以分析推文中的情绪

Exploring Deep Neural Networks and Transfer Learning for Analyzing Emotions in Tweets

论文作者

Senarath, Yasas, Thayasivam, Uthayasanker

论文摘要

在本文中,我们提出了一个实验,以在推文中使用深度学习和转移学习技术进行情绪分析,并提出一种解释我们深度学习模型的方法。提出的情绪分析方法将长期记忆(LSTM)网络与卷积神经网络(CNN)结合在一起。然后,我们使用转移学习技术扩展了这种方法进行情感强度预测。此外,我们提出了一种技术,可以在推文中可视化每个单词的重要性,以更好地了解模型。在实验上,我们在分析中表明,所提出的模型的表现优于情绪分类的最新模型,同时保持竞争性会导致预测情绪强度。

In this paper, we present an experiment on using deep learning and transfer learning techniques for emotion analysis in tweets and suggest a method to interpret our deep learning models. The proposed approach for emotion analysis combines a Long Short Term Memory (LSTM) network with a Convolutional Neural Network (CNN). Then we extend this approach for emotion intensity prediction using transfer learning technique. Furthermore, we propose a technique to visualize the importance of each word in a tweet to get a better understanding of the model. Experimentally, we show in our analysis that the proposed models outperform the state-of-the-art in emotion classification while maintaining competitive results in predicting emotion intensity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源